Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends
نویسندگان
چکیده
Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we provide evidence that changes in the concentrations of ozone-depleting substances (ODS), not WMGHG, have been the primary driver of observed Arctic lower stratospheric trends in both ozone and temperature. We do so by analyzing polar cap ozone and temperature trends in reanalysis data: these clearly suggest that both trends are mainly driven by ODS in the lower stratosphere. This observation-based finding is supported by results from a stratosphere-resolving chemistry-climate model driven with time-varying ODS and WMGHG, specified in isolation and in combination. Taken together, these results provide strong evidence that ODS are the main driver of changes in the Arctic lower stratospheric temperatures and ozone, whereas WMGHG are the primary driver of changes in the upper stratosphere.
منابع مشابه
The Impact of Ozone-Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower-Stratospheric Cooling since the Late 1990s
The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active ...
متن کاملEffects of changes in well-mixed gases and ozone on stratospheric seasonal temperatures
[1] Monthly and seasonal stratospheric zonal-mean temperature trends arising from recent changes in stratospheric ozone and well-mixed greenhouse gases (WMGGs) are simulated using a general circulation model and compared with observed (1979–2000) trends. The combined effect of these gases yields statistically significant cooling trends over the entire globally averaged stratosphere in all month...
متن کاملAttribution of observed changes in stratospheric ozone and temperature
Three recently-completed sets of simulations of multiple chemistry-climate models with greenhouse gases only, with all anthropogenic forcings, and with anthropogenic and natural forcings, allow the causes of observed stratospheric changes to be quantitatively assessed using detection and attribution techniques. The total column ozone response to halogenated ozone depleting substances and to nat...
متن کاملOn the attribution of stratospheric ozone and temperature changes to changes in ozone-depleting substances and well-mixed greenhouse gases
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozoned...
متن کاملState of the Environment Queensland 2007
Key findings !" Atmospheric concentrations of ozone depleting substances have decreased as a result of the effectiveness of the Montreal Protocol. !" The global (60°S–60°N) ozone concentration is projected to return to pre-1980 levels by around the middle of the 21st century. !" Antarctic ozone levels are projected to return to pre-1980 levels around 2060–75, which is 10–25 years later than pre...
متن کامل